Airborne Observatory SOFIA

NASA is developing a world-class airborne observatory, that will complement the Hubble, Spitzer, Herschel and James Webb space telescopes and major Earth-based telescopes. This cool airborne observatory is named as the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA features a German-built 100-inch (2.5 meter) diameter far-infrared telescope weighing 20 tons mounted in the rear fuselage of a highly modified Boeing 747SP aircraft. It is one of the premier space science programs of NASA's Science Mission Directorate.

SOFIA is a joint program by NASA and DLR Deutsches Zentrum fur Luft- und Raumfahrt (German Aerospace Center). Major aircraft modifications and installation of the telescope has been carried out at L-3 Communications Integrated Systems facility at Waco, Texas. Completion of systems installation, integration and flight test operations are being conducted at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif., from 2007 through 2010. SOFIA's science operations are being planned jointly by the Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI) under leadership of the SOFIA Science project at NASA's Ames Research Center at Moffett Field near San Jose, Calif.

SOFIA will continue the legacy of prominent planetary scientist Dr. Gerard Kuiper, who began airborne astronomy in 1966 with a 12-inch telescope aimed out a window of a converted Convair 990 jetliner. His work led to the development of NASA's Kuiper Airborne Observatory, a modified C-141 aircraft incorporating a 36-inch reflecting telescope that flew from 1974 to 1995. During its 21-year lifetime, the Kuiper Airborne Observatory focused on solar system, galactic and extra-galactic astronomy, and discovered the rings of Uranus, a ring of dust around the center of the Milky Way, luminous infrared galaxies, complex organic molecules in space and water in comets.

Once it begins operations in about 2010, SOFIA'S 2.5-meter (100 inch) diameter reflecting telescope will provide astronomers with access to the visible, infrared and sub-millimeter spectrum, with optimized performance in the mid-infrared to sub-millimeter range. During its 20-year expected lifetime it will be capable of "Great Observatory"–class astronomical science.

SOFIA will provide three times better image quality and vastly increased observational sensitivity than the Kuiper Airborne Observatory. From a base at NASA Dryden, SOFIA mission operations will be conducted over virtually the entire globe. Missions will be flown at altitudes of 39,000 to 45,000 feet, above 99 percent of the water vapor in the lower atmosphere that restrict the capabilities of ground-based observatories over most of the infrared and sub-millimeter spectral range.